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In recent years, parallel synthesis and screening technologies have
increasingly been applied to the discovery of chiral catalysts.1-3

The evaluation of enantioselective catalysts in a parallel fashion is
necessary to avoid the cancellation of opposing enantioselectivities
that would result from combined screening. It would be extremely
useful to directly measure the enantioselectivity of the component
enantiomers of a racemic catalyst without first having to resolve
or prepare the individual catalyst enantiomers.4-8 In this Com-
munication, we report and discuss our finding that the diastereo-
selectivity observed upon sequential transformation of an achiral
substrate bearing two remote prochiral centers can sometimes be
used to calculate catalyst enantioselectivity.

There are many reports of the reaction of an enantiopure reagent
or catalyst with an achiral substrate bearing multiple prochiral
centers.9-14 Scheme 1 illustrates the simple case of a symmetrical
diketone1 with remote carbonyls that is quantitatively reduced in
the presence of a chiral catalyst to afford a mixture of the three
stereoisomers of diol3. For a reaction utilizing an enantiopure
catalyst, it is easy to establish that if one defines ee1 as the
enantioselectivity of the first step (formation of intermediate ketol,
2) and de2 as the diastereoselectivities of the second step (assumed
identical), then dehomo, the preference for formation of the homo-
chiral versus meso diastereomer, is simply the product of ee1 and
de2 (eq 1).15 The observed diastereoselectivity, dehomo, is large when
the stereoselectivities (ee1 and de2) are both high. In the special
case where the stereoselectivities of the two steps are identical,
dehomo is given simply as the square of ee1 (eq 2). Consequently,
the easily measured dehomo can be used to calculate ee1, the
enantioselectivity of the first step.

The situation becomes more complex for racemic catalysts, as
the second reaction step may involve a catalyst molecule that is
the enantiomer of the one used in the initial step. In such instances
where substantial catalyst “scrambling” occurs, dehomo will be nil,
whatever the ee1. In the special case where the same enantiomer
of the catalyst is involved in both steps, the above discussion shows
that eqs 1 and 2 remain valid, and dehomo > 0 will be observed. In
other words, a racemic catalyst is expected to produce a low level
of the meso product diastereomer whenever a single catalyst
molecule with high enantioselectivity performs both steps on a
bifunctional substrate. We report here on such a case involving a
catalyst-substrate system in which the second reaction is fast
relative to release of the initial product-catalyst complex.

To ensure that ee1 and de2 are the same, it is necessary to design
a bifunctional substrate where the reactive centers are sufficiently

separated so as to minimize substrate control in the second reaction.
Otherwise, eq 2 becomes invalid, and one must use eq 1 where the
desired information ee1 is obscured by the presence of de2 (a
composite of catalyst and substrate control).15 As a first check on
the validity of the above ideas, we investigated diketone1, which
afforded a nearly statistical 1:2:1 ratio of diol3 stereoisomers (i.e.,
no diastereoselectivity) when reduced by a variety of achiral
reagents.16-18 Enantioselective borane reductions catalyzed by chiral
oxazaborolidines (OABs) derived from 2,2-diphenylprolinol were
initially considered. Catalysts such as4-6 are often used in
asymmetric catalysis.19

Ketone 7 was selected as a model for study of the enantio-
selectivity of the monoreduction of1. Its reduction to alcohol8 by
0.75 equiv of BH3‚SMe2 under various conditions in the presence
of OAB catalysts gave enantioselectivities close to 90% ee.
Reduction of diketone1 by enantiopure catalysts4-6 afforded the
chiral diol3 in very high ee (close to 99%). The diastereoselectivity
dehomois quite good, and the relationship between dehomoand eehomo

is accurately described by

established when ee1 ) de2.15

We were pleased to observe that reduction of diketone1 with
the corresponding racemic catalysts4-6 also afforded diol3 with
high diastereoselectivity (dehomo).

As shown in Table 1, use of eq 2 to calculate ee1 on the basis of
measured dehomo values gave results similar to those obtained by

† UniversitéParis-Sud.
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ee1de2 ) dehomo (1)

ee1
2 ) dehomo (if ee1 ) de2) (2)

Scheme 1. Diagram of the Product Distribution in Two
Consecutive Asymmetric Reactions with an Enantiopure Catalyst

eehomo) 2(dehomo)
1/2/(1 + dehomo) (3)
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reduction of model ketone7. Comparable results were obtained
using toluene as a reaction solvent (see Supporting Information).

Two additional catalytic systems were investigated, hydrosilyl-
ation (R-naphthylphenylsilane) catalyzed by [RhCl(diop)(cod)]20 and
hydrogen transfer from 2-propanol catalyzed by a chiral ruthenium
complex generated in situ from [{RuCl2(p-cymene)}2], ephedrine,
and KOH.21 The enantio- and diastereoselectivities of these reactions
were studied using the enantiopure catalysts and are in good
agreement with eqs 3 and 2. However, no diastereoselectivity is
observed with the racemic catalysts, suggesting that significant
catalyst scrambling has occurred.

What then makes the OAB catalysts so special? To answer this
question, it is helpful to consider the mechanism of the reaction.19

It has been observed that two hydrogen atoms from BH3 are used
in ketone reductions, the second hydrogen being delivered in a faster
reaction.22 In the present case, the half-reduced species9 contains
an N-coordinated ROBH2 moiety that can serve as an excellent
hydride donor. Consequently, intramolecular hydride delivery to
form 10occurs rapidly, the large size of the chelation ring ensuring
that the first stereocenter does not influence the stereochemical
outcome of the second reduction.23 Instead, product stereochemistry
is controlled predominantly by the chiral oxazaborolidine system.

Additional support for this interpretation is provided by some
experiments with (S)- or (R)-ketol2 (98% ee), prepared by reduction
of 1 by (+)- or (-)-Ipc2BBr, respectively. The reduction of (S)- or
(R)-2 by a stoichiometric amount of (R)-OAB 5 (in situ complexed
by 1 mol equiv of borane)24 gave a large amount of homochiral
(S,S)-diol 3 ((S,S):meso) 96:4) ormeso-diol 3 (meso:(R,R) ) 93:
7), respectively, clearly establishing that the stereochemical outcome
of the second reduction step is under catalyst control, with the (R)-
catalyst affording the (S)-stereocenter in both the matched and the
mismatched cases.25 This suggests that ee1 and de2 are indeed
equivalent and that the use of eq 2 to calculate ee1 is justified.

In conclusion, these results demonstrate that, at least in some
specialized cases, it is possible to evaluate the enantioselectivity
of racemic catalysts without the need for resolution. One can
envision additional strategies to counteract the escape of the catalyst

before the second reaction has taken place. We are presently
investigating these approaches in an effort to expand the generality
of this method of using easily measured diastereoselectivity as an
indicator of the enantioselectivity of the component enantiomers
of a racemic catalyst.
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Table 1. Diastereoselectivity and Enantioselectivity in the
Reduction of Diketone 1 in THFa,b

catalyst % dehomo
c

% ee1
d

(% ee of 8)c

(R)-4e 87 93 (82)
(R)-4f 86 93 (79)
rac-4e 56 75 (82)
rac-4f 86 93 (79)
(S)-5e 81 90 (87)
(S)-5f 72 85 (83)
rac-5f 83 91 (83)
(R)-6e 89 94 (-)g

rac-6e 82 91 (-)g

a 10 mol % of catalyst unless otherwise stated.b Addition of a solution
of 1 in 1 h to asolution of catalyst and BH3‚SMe2 (2.5 equiv). Reaction
time: 1 h, unless otherwise stated. Quantitative conversion of1. More details
in Supporting Information.c Measured by chiral SFC (Chiralcel OD-H).
(R)-OAB catalysts give (S,S)-diol 3. d Calculated from eq 2.e 0 °C. f 66
°C. g Not measured.
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